
 

 

Aggregation Methods Using Bathymetry Sources of Differing 

Subjective Reliabilities for Navigation Mapping 

Paul Elmorea†*, Brian Calderb†, Fred Petryc, Giuseppe Masettib, Ron Yagerd 

aJohns Hopkins University / Applied Physics Laboratory, Laurel MD, United States 

bCenter for Coastal and Ocean Mapping / Joint Hydrographic Center, University of 

New Hampshire, Durham NH, United States 

cOcean Science Division, Naval Research Laboratory, Stennis Space Center MS, United 

States 

dMachine Intelligence Institute, Iona College, New Rochelle NY, United States 

 

*corresponding author: paul.elmore@jhuapl.edu 

†Both co-authors share first-authorship 

 

ORCID IDs:  

Paul Elmore - 0000-0003-0115-2682 

Brian Calder - 0000-0001-9871-7824 

Giuseppe Masetti - 0000-0002-9632-6747 

Accepted for publication in Marine Geodesy 

DOI: 10.1080/01490419.2023.2166173 

mailto:paul.elmore@jhuapl.edu


 

 

 Aggregation Methods Using Bathymetry Sources of Differing 

Subjective Reliabilities for Navigation Mapping 

 

Abstract: When planning for ship navigation or compiling data for a bathymetry map, 

the navigator or mapper uses many different sources of bathymetry information and 

navigation hazards. The quality of these sources is inconsistent in general, however, 

making it challenging to provide a coherent picture for planning. Here we describe an 

approach for consistent planning/mapping that uses a combination of soft computing 

and Bayesian estimation. The case study used to exercise this system involves NOAA 

Electronic Nautical Charts for an area in the Chesapeake Bay. We first interpolate each 

set of irregularly spaced soundings to gridded versions of each point-cloud set. Each of 

these intermediate grids are then aggregated into a fused bathymetric realization using 

Order Weighted Averaging (OWA) to provide the weights for each source based on 

their subjective reliabilities. The OWA allows for fusion informed by the user's 

subjective risk allowed in the reconstruction of the seafloor surface and provides 

quantitative methods to generate, use and record subjective reliability weights. Each 

sounding point that went into the bathymetry estimate is then categorized as "no-go", 

"caution" or "go" status. Reliability estimates are reused for weighted Bayesian 

categorization of each output grid cell to compute the navigable surface.  

 

Keywords: Bathymetry Fusion, Navigation Risk, Order Weighted Average, Bayesian 

Categorical Estimation 

 



 

 

1. Introduction 

Effective and safe ship transit is of great concern to the development of products 

for navigational decision-making. It is well known that mistakes or imprecision in 

navigation charts have led to numerous shipwrecks. A review of Canadian, United 

States and European shipwreck data (Bakdi et al., 2020) reports a total of over 100,000 

maritime accidents during various periods over the 2000 to 2019 era. This includes 

cargo, military and passenger transport ships. The grounding of the USS Guardian 

(Figure 1) is one recent example (Whaley, 2013) 

Over 90% of worldwide commerce uses shipping (Naevestad, 2019), often from 

ports located on the major rivers of the world.  Where major rivers flow into the ocean 

there are many navigation problems. For example, the Columbia River of the western 

US has the Columbia Bar, a shifting sandbar that makes the river's mouth one of the 

most hazardous stretches of water to navigate in the world (Saddler, 2006). Since 1792, 

approximately 2,000 large ships have sunk in and around the Columbia Bar, and 

because of the danger as well as the numerous shipwrecks the mouth of the Columbia 

River, this location has acquired a reputation worldwide as the graveyard of the Pacific 

(Wilma, 2006).  

The most important task of a ship navigator is to decide how to safely traverse 

the water surface between start and ending points of a ship’s course. While there are 

multiple factors related to safe navigation (e.g., avoidance of hazardous weather, areas 

of civil unrest, etc.), in this paper we use the term “safe navigation” to mean that the 

vessel does not make contact with the seafloor or underwater obstructions, where the 

depth of the keel dictates the shallowest depth that it can navigate (Calder, 2015; 

Gilardoni and Presedo 2017).  



 

 

An experienced navigator uses multiple sources of information for multi-criteria 

decision-making and forms a mental-model of safe navigation areas based on the 

location of soundings (geospatial points on a chart attributed with water depth) as well 

as obstruction or “hazard” locations to avoid (Cutler 2003). Part of the rationale for this 

mental processing is that point representations of seafloor depth and hazards on 

Electronic Navigation Charts (ENC; International Hydrographic Organization, 2000) 

are sparse geospatially. Soundings are quantitative but often lack information regarding 

the uncertainty of the depth, such as one-standard deviation, an interval, a percentage of 

water depth or, as defined by the International Hydrographic Organization (IHO), a 

Category Zone of Confidence (CATZOC, IHO Publication S-67, 2020). Hazards, 

however, have a qualitative aspect on charts. Cartographers generating the chart provide 

qualitative identification of the hazard using symbols that map the location on the chart 

and linguistic labels for each symbol (e.g., “shipwreck”, “sounding doubtful”, “rocks”, 

“value of sounding” (VALSOU), etc.) to identify the hazard type.  

A navigator can judge that information sources have differing degrees of 

reliability based on the nature of the charts being used, the configuration of the 

soundings and contours, the known or estimated character of the seafloor, the age of the 

data, etc. (Calder, 2015). Such human-in-the-loop judgement is becoming even more 

important as community-based bathymetry collection becomes further developed 

(Calder et al., 2020), machine learning-based assessments from imagery become 

implemented (Chenier et al. 2020), source type and technology used to collect the data 

become attributed to digital bathymetry data as well as subsequent charts (Calder, 2015, 

Weatherall et al., 2015; International Hydrographic Office, 2019; Jakobsson et al., 

2020; EMODnet 2020), and CATZOC attributions are assessed more fully in ENCs 

(IHO Publication S-67, 2020). Thus, the critical aspects of this human-based production 



 

 

of a navigation plan are a) forming a believable forecast of seafloor depth contours in 

the areas between the soundings and b) doing so using optimistic and pessimistic 

outlooks of what the information means for keel clearance as influenced by information 

sparsity and reliability. Although automated and objective means for multi-criteria route 

planning and navigation risk-evaluation are now being proposed in the literature (Jeong 

et al., 2019; Bakdi et al., 2020, Kastrisios et al. 2020), a human still makes the final 

judgement for execution of the route and will assess the reliability of all information 

presented through human-in-the-loop processes.   

In this paper we describe a hybrid-framework using both soft computing and 

quantitative methodologies that provide an approach for navigation planning. Our 

objective is to develop this framework through application of ordered weighted 

averaging (OWA) (Yager 1988; Beliakov et al., 2009) and Dirichlet categorical 

estimation (Gelman et al., 2013) sub-processes, respectively. The use of the OWA 

provides a means for allowing the human-in-the-loop judgement of reliability of the 

information sources and attitudinal risk tolerance than can be used in the quantitative 

Bayesian estimate of navigation risk category. This process provides a chart of clearly 

defined areas for safe or unsafe navigation as well as fuzzy areas in between where it 

may be safe or unsafe for navigation by mapping areas that are “go”, “no-go” and 

“caution” areas, respectively. Another reason for the use of the OWA, a fuzzy logic 

stage, is significantly reduced computation costs versus a strict Bayesian approach for 

the steps of the process involving injection of linguistic/subjective/non-numerical 

knowledge into the analysis. 

Section 2 of this paper presents the overall approach. The OWA is formally 

introduced. The section provides simple examples of how to use the OWA with a 

simple bathymetric test example. The OWA is further developed to show how human 



 

 

assessed reliability can be used for the fusion process and how the reliabilities then are 

reused in the Bayesian process, respectively. Section 3 introduces a case study of using 

this framework with ENC data in the Chesapeake Bay area. An overview of the data 

and computational implementations are discussed. Section 4 provides results of the test 

case for two example keel depths, showing how the reliabilities assessments, attitudinal 

risk tolerance and number of points used affect the results. Sections 5 and 6 provide 

discussion and summary, respectively.  

2. Approach 

 The approach here is to allow for a construction of the seafloor surface from the 

various sources using the OWA and Bayesian techniques. Specifically, the problem being 

solved is the inconsistency in charted soundings and information due to differences in 

compilation and generalization. The OWA is needed to generate “safe” realisations, and 

then the Bayesian categorical estimation is used to fuse these into an estimated navigation 

category. Deeper or shallower estimates of depths can be based on parameters that could 

be adjusted to reflect the opinion of expert observers, environmental events within the 

area, the current tactical situation, and other factors. The use of this combined approach 

enables the use of these human-based and other qualitative factors within a recordable 

and quantitative framework. This framework also allows for record keeping of these 

qualitative factors so these judgements are inspectable and computations are 

reproducible. 

 Overall, irregularly spaced soundings are used as input, which then undergo 

aggregation and categorical processing steps; the output is gridded map displaying 

differing navigation categories (Figure 2).  We use charted soundings from ENC data 

for this input data. We assume that the typical end-user would obtain such information 

from ENC products rather than accessing databases with multibeam or single beam 



 

 

soundings for input (although use of such databased information is permissible in this 

framework) due to volume of such data and level of expertise required to process it 

correctly. Here, only the soundings as they appear in the “SOUNDG” layer in each 

ENC data product are used (source survey soundings,  “hydrographic” scale sounding 

sets for chart production, or other “submerged” chart features having associated a 

bathymetric value (e.g., depth contours, underwater rocks) are not used here for 

simplicity in developing the overall approach). For each set of soundings used in the 

aggregation process, an intermediate gridded bathymetry surface is generated using an 

inverse distance weighting interpolation scheme. These intermediate surfaces are then 

used to construct two reference bathymetry grids used for categorical estimation. The 

first bathymetry grid is the shallowest (i.e., shoalest) surface that can be generated from 

the intermediate grids (i.e., at each xy-grid point, the shallowest depth from the 

intermediate surfaces at this xy-position is assigned to this shallow bathymetry grid). 

The second surface is a deeper bathymetry that is calculated using the OWA process, 

controlled by a parameter 𝜃 ∈ [0, 1) that adjusts this bathymetry surface in depth to 

reflect expert opinion, source metadata, present tactical situation, tidal level or vertical 

datum reference, etc. Once these two surfaces are constructed, the point cloud 

soundings that went into computing the grid point are categorized as “go”, “caution” or 

“no-go” based on keel depth, soundings depths and the two reference bathymetry grids 

as follows.  

• “No-go”: the keel depth is either deeper than the a) sounding depth OR b) 

deeper reference depth 

• “Go” if the keel depth is shallower than the a) sounding depth AND b) shallow 

reference depth  



 

 

• “Caution” if a) the keel depth is in between the two reference depths AND b) the 

sounding is in between the two surfaces.  

The output grid-point for the navigable surface is the maximum a posteriori category 

from the Bayesian estimates of the three categories (ties go to most pessimistic 

category). The overall map then displays the “go”, “no-go” and “caution” categories. 

The “caution” category forms a safety contour that is a “fuzzy” contour between the 

“go” and “no-go” regions.  

 

 

2.1. Order-Weighted Averaging (OWA)  

 The OWA operation (Yager and Kacpryzk 1997) provides quantitative methods to 

use risk tolerance and subjective weighting of the navigation product by reliability to 

construct a weighted average of a target variable of interest. Since linguistic quantifiers, 

CATZOCs, tidal datums, and identification of source types are becoming part of the 

community of practice (e.g., Ch. 17: IHO Publication B-11, 2019; Jakobsson et al., 

2020; EMODnet, 2020; IHO Publication S-67, 2020; Kastrisios and Ware, 2022), this 

information can form subjective judgment on the reliability/trust of the information. 

These attributions can be mapped by an end-user into reliability metrics used as 

generating functions for OWA weights.  

 OWA Definition: An OWA aggregator operator (Yager 1988) of dimension n is the 

mathematical mapping operation ℝn → ℝ (ℝ is the set of real numbers) that has an 

associated n dimensional vector of weights 

  𝑊 =  [

𝑤1

⋮
𝑤𝑛

] (1) 



 

 

operating on set A = {𝑎1, … , 𝑎𝑛} such that: 1) wj ∈ [0,1]; and 2) ∑ wjj = 1.  Let  be an 

index function on A so that a new reordered version of A = {𝑎𝜆(1), … , 𝑎𝜆(𝑛)} is created. 

Each element is ordered such that 𝑎𝜆(1) ≻ 𝑎𝜆(2) ≻ ⋯ ≻ 𝑎𝜆(𝑛) according to some 

ordering operator that is problem specific (e.g., the “greater than” operator for simple 

cases).  Then, we can define 

  OWA(𝑎1, … , 𝑎𝑛) =  ∑ 𝑤𝑗𝑎𝜆(𝑗)
𝑛
𝑗=1 .  (2) 

Section 2.1.4 below proposes an ordering scheme based on reliability of each ai.  

2.1.1. Common Cases 

 The OWA operator allows for a wide variety of different types of aggregation 

depending on the choice of the weighting vector W and the ordering operator. Some 

notable examples of weighting vector and their resulting aggregation are as follows. 

 1) W*:  w1 = 1 and wj = 0 for j  1. Thus, OWA(a1, …, an) = a(1) = Maxi(ai) 

 2) W*:  wn = 1 and wj = 0 for j  n; OWA(a1, …, an) = a(n) = Mini(ai) 

 3) Wn:  wj = 1/n for all j = 1 to n;  OWA(a1, …, an) = 
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1 = mean(𝑎1, … , 𝑎𝑛)  

 4) W[K]:  wK = 1 and wj = 0 for j  K; OWA(a1, …, an) = a(K) 

 We observe that as more weight is assigned to the wj with smaller indices (terms 

near the top of W), the larger the aggregated value.  On the other hand, if more of the 

weight is assigned to the wj with the larger index (terms near the bottom of W), the 

smaller the aggregated value. The choice of weighting vector W determines the form of 

OWA aggregation. 

 

2.1.2. OWA Weight Generation with Dependence on Attitudinal Character,  



 

 

 A class of approaches for obtaining wj’s that can be used for safety of navigation is 

based on regular increasing monotone quantifiers (Yager et al 2017). Let f: [0, 1] → [0, 

1] be a monotonic function (i.e. 𝑓(𝑥) ≥ 𝑓(𝑦)
 
if 𝑥 ≥ 𝑦 with f(0) = 0 and f(1) = 1).  

Using this function, we can obtain the wj for j = 1 to n such that  

  𝑤𝑗 = 𝑓 (
𝑗

𝑛
) − 𝑓 (

𝑗−1

𝑛
)  (3) 

With Eq. (3), wj  [0, 1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 as required for the OWA weights. 

 Following from Yager et al. (2017), let f(x) be specified by f(x) = xm for m  0 in 

Eq. (3), with x being abstract for the moment. Then, the “attitudinal character” (to be 

applied to the bathymetry context below) is defined in Yager et al. (2017) to be the 

integral of f(x) from 0 to 1.  

  𝜃 = ∫ 𝑥𝑚𝑑𝑥 = (𝑚 + 1)−11

0
.  (4) 

Given Eq. (4), define 𝑚 ≡
𝜃

1−𝜃
 (which is different from Yager et al. (2017), as our 

order of the data will be reversed from the application in that paper).  With this 

functional form, the OWA weights for j = 1 to n are  

  𝑤𝑗 = 𝑓 (
𝑗

𝑛
) − 𝑓 (

𝑗−1

𝑛
) = (

𝑗

𝑛
)

𝑚
− (

𝑗−1

𝑛
)

𝑚
. (5) 

Defining 𝑚 ≡
𝜃

1−𝜃
 in Eq. (5), 

  𝑤𝑗 = (
𝑗

𝑛
)

𝜃

1−𝜃
− (

𝑗−1

𝑛
)

𝜃

1−𝜃
 .  (6) 

Hence, for 𝜃 = 0, m = 0, and the weights are heavier on w1. As 𝜃 → 1, 𝑚 →  ∞ 

and the weights are heavier on 𝑤𝑛.  The value 𝜃 = 0.5 implies m = 1, so 𝑤𝑗 =
1

𝑛
∀𝑗, 

equally weighting all inputs.  Consequently, user choice of 𝜃 can adjust the 



 

 

reconstruction using the 𝑊 = [𝑤𝑗] from largest to smallest value, or in bathymetric 

terms, deepest to shoalest plausible reconstruction. 

The parameter 𝜃 ∈ [0,1] is the subjective attitudinal character the navigator may 

have in the ambiguity of the “caution” category of safety when processing the ordered 

set of bathymetry values, ordered from deepest to shallowest. The values 𝜃 = 0, 0.5, and 

~1 linguistically mean “completely pessimistic” (i.e., the navigator wants to consider 

only the deepest values of bathymetry for extra keel clearance and have more “go” 

categories changed to “caution”), “neutral” (i.e. use a simple weighted average), and 

“completely optimistic” (i.e., the navigator is willing to route the ship as shallow as 

possible or may be operating an amphibious craft). Note that complete pessimism forces 

the OWA to provide the deepest bathymetry (i.e. maximum depth) being considered in 

the OWA process for additional keel clearance.  

 

2.1.3. Example 1 - OWA by Attitudinal Character Alone 

This section and subsequent sections for Examples 2 and 3 provide simple 

examples for using the OWA and, later, Bayesian categorical estimation. The intent is 

to provide simple examples that can be worked by hand, spreadsheet program or 

software for reader intuition. Figure A1 in Appendix A provides graphs of the depth 

estimates and OWA weights as a function of attitudinal character for the cases 

discussed.  

Consider the following three sets of depth information, * * *

1 2 318,  16,  20z z z= = = . 

One first reorders by depth to get
1 2 320,  18,  16z z z= = = . With this ordering, OWA 

weights for this information for the following three different degrees of attitudinal 

character.  

 



 

 

Case a)  = 0.5: Here 𝑚 ≡ 𝜃 (1 − 𝜃)⁄  = 1 and hence 𝑤𝑗 = (
𝑗

𝑛
)

1
− (

𝑗−1

𝑛
)

1
for each j.  

Thus, for neutral optimism, the OWA reduces back to the standard arithmetic mean.  

OWA(𝑧, 𝑤; 𝜃 = 0.5) =
1

3
(16 + 18 + 20) = 18 

 

Case b)  = 0.2: Generation of “deeper” bathymetry for  = 0.2 (recall that  =0 yields 

the maximum value of the set) has m = 
𝜃

1−𝜃
=

0.2

0.8
= 0.25, so that 𝑤𝑗 = (

𝑗

𝑛
)

0.25
−

(
𝑗−1

𝑛
)

0.25
. For this case, 

      (
𝑗

𝑛
)

0.25

(
𝑗−1

𝑛
)

0.25
𝑤𝑗               𝑤𝑗𝑧𝑗       

𝑗 = 1 0.76 0           0.76              15.2        

𝑗 = 2
𝑗 = 3

 

0.90
1
 

0.76
0.90

 

0.14
0.10

∑ 𝑤𝑗 = 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

2.6
1.5

∑ 𝑤𝑗𝑧𝑗 = 19.3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

   

 

Case c)  = 0.8: The “shallower” value of  = 0.8, (recall that  -> 1 yields the minimum 

value of the set) m = 
𝜃

1−𝜃
=

0.8

0.2
= 4, so that 𝑤𝑗 = (

𝑗

𝑛
)

4
− (

𝑗−1

𝑛
)

4
. For this case, 

      (
𝑗

𝑛
)

4
     (

𝑗−1

𝑛
)

4
          𝑤𝑗              𝑤𝑗𝑧𝑗         

𝑗 = 1    1/81       0          1/81            0.25    

𝑗 = 2
𝑗 = 3

 

 16/81
1
 

1/81
 16/81   

 

15/81
65/81

∑ 𝑤𝑗 = 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

   3.33
12.84

∑ 𝑤𝑗𝑧𝑗 = 16.42̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  

 

2.1.4.  Inclusion of Reliability in OWA for Safety of Navigation 

 Consider the situation in which each jth set of soundings, Zj, has an integer measure 

of relative reliability; 𝑅𝑗 ∈ [𝑅min, 𝑅max], 𝑅min ≥ 1, 𝑅𝑗 ∈  ℤ+; which can be objective, 

e.g., from a statistical process, or subjective, e.g., from linguistic quantifiers mapped to 



 

 

an interval of integers (use of an 𝑅𝑗 = 0 would amount to discarding the data set). A 

value of Rj = 𝑅min,  could mean “least reliable of sources” (e.g., due to source provider, 

age of the data, storm or tsunami events making the information unreliable, etc.), 𝑅max 

means “most reliable of sources”, and intermediate values provide degrees of 

“intermediate reliability”. Importantly, Rj depends on the number and scale of the other 

reliabilities, so that reliability is in relative terms (i.e., “twice as good as that one”). 

Setting 𝑅min = 𝑅max means that all sources have equal weight. 

 Following Yager et al. (2017), the reliability index for an OWA, 𝑟𝑗 , is then 

generated from 𝑅𝑗 as follows. First, for each Zj, the normalized reliability is computed 

as 𝑟𝑗 = 𝑅𝑗 ∑ (𝑅𝑗)𝑛
𝑗=1⁄ .  For the application purpose of navigation safety, there will 

always be an 𝑅𝑗 > 0 such that ∑ 𝑟𝑗𝑗 = 1. Next, define 

  𝑆𝑗 ≡ ∑ 𝑟𝑖
𝑗
𝑖=1   (7) 

where Sj is the partial cumulative summation of the normalized reliabilities associated 

from 1 to j, with SN =1. Since 𝑆𝑗 is monotone increasing (and therefore meets the 

requirements used to create Eq. (3)), we can substitute 𝑆𝑗 for 𝑗 𝑛⁄  in Eq. (6) to get 

  𝑤𝑗
† = (𝑆𝑗)

𝜃

1−𝜃 − (𝑆𝑗−1)
𝜃

1−𝜃 (8) 

where the dagger superscript indicates weighting by reliability. Note that in the special 

case of all reliabilities being equal, Eq. (8) reverts to Eq. (6). Example 2 illustrates use 

of Eq. (8) for OWA computations for non-equal degrees of reliability. 

 

2.1.5. Example 2 - OWA by Reliabilities  

 Example 2 repeats Example 1 except now let there be two sets of subcases that have 

differing reliabilities: i) 𝑟1 = 0.3, 𝑟2 = 0.6, 𝑟3 = 0.1; and ii) 𝑟1 = 0.1, 𝑟2 = 0.1, 𝑟3 = 0.8. 



 

 

For the special case of 
  
r
1
= r

2
= r

3
= 1̀/ 3, the cases below revert back to their 

counterparts in Example 1. Figures  A1.c and A1.d correspond to these examples.   

 

Case a)  = 0.5: As shown in Example 1a), m = 1. Thus, in this special case, the OWA 

revert to standard weighted average, with the weights given by the normalized 

reliabilities, 𝑟𝑗.  

i)  OWA(𝑧 = {20,18,16}|𝜃 = 0.5, 𝑟 = {0.3, 0.6, 0.1}) = 0.3(20) + 0.6(18) +

0.1(16) = 18.4   

ii) OWA(𝑧 = {20,18,16}|𝜃 = 0.5, 𝑟 = {0.1, 0.1, 0.8}) = 0.1(20) + 0.1(18) +

0.8(16) = 16.6 

 

Case b):  = 0.2 

i) θ = 0.2, 𝑚 = 0.25, 𝑟 = {0.3, 0.6, 0.1} 

𝑗 = 1
𝑗 = 2
𝑗 = 3

  

𝑧𝑗

20
18
16
  

𝑟𝑗

0.3
0.6
0.1

  

𝑆𝑗

0.3
0.9
1
  

𝑆𝑗−1

0
0.3
0.9

  

𝑤𝑗 = 𝑆𝑗
0.25 − 𝑆𝑗−1

0.25

0.74
0.23
0.03

∑ 𝑤𝑗 = 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑤𝑗𝑧𝑗

14.8
4.2
0.4

∑ 𝑤𝑗𝑧𝑗 = 19.4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  

ii) 𝜃 = 0.2, 𝑚 = 0.25, 𝑟 = {0.1, 0.1, 0.8} 

𝑗 = 1
𝑗 = 2
𝑗 = 3

  

𝑧𝑗

20
18
16
  

𝑟𝑗

0.1
0.1
0.8

  

𝑆𝑗

0.1
0.2
1
  

𝑆𝑗−1

0
0.1
0.2

  

𝑤𝑗 = 𝑆𝑗
0.25 − 𝑆𝑗−1

0.25

0.56
0.11
0.33

∑ 𝑤𝑗 = 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑤𝑗𝑧𝑗

11.2
1.9
5.3

∑ 𝑤𝑗𝑧𝑗 = 18.4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  

 

Case c): 𝜃 = 0.8 

i) 𝜃 = 0.8, 𝑚 = 4, 𝑟 = {0.3, 0.6, 0.1}  



 

 

𝑗 = 1
𝑗 = 2
𝑗 = 3

  

𝑧𝑗

20
18
16
  

𝑟𝑗

0.3
0.6
0.1

  

𝑆𝑗

0.3
0.9
1
  

𝑆𝑗−1

0
0.3
0.9

  

𝑤𝑗 = 𝑆𝑗
4 − 𝑆𝑗−1

4

0.01
0.65
0.34

∑ 𝑤𝑗 = 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑤𝑗𝑧𝑗

0.2
11.7
5.5

∑ 𝑤𝑗𝑧𝑗 = 17.4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  

ii)  𝜃 = 0.8, 𝑚 = 4, 𝑟 = {0.1, 0.1, 0.8} 

j = 1
j = 2
j = 3

  

zj

20
18
16
  

rj

0.1
0.1
0.8

  

Sj

0.1
0.2
1
  

Sj−1

0
0.1
0.2

  

wj = Sj
4 − Sj−1

4

0.0001
0.0015
0.9984

∑ wj = 1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

wjzj

0.002
0.027

15.974

∑ wjzj = 16.003
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

     

 

2.2. Bayesian component  

2.2.1. Expectation Values 

 The OWA analysis allows construction of attitudinally-adjusted surfaces for each 

source of data, and therefore classification of source estimates of depth.  Bayesian 

categorical estimation is used to compute the posterior probability of each category of 

navigational safety label and hence fuse all sources of information. Appendix B 

provides mathematical details for deriving mean estimates discussed in this section.  

 Categorical estimation problems for multinomial cases are usually based on the use 

of the Dirichlet distribution as the natural conjugate prior (Ch 23, Gelman et al. 2013). 

Maximum a posteriori probability reconstruction then results in a ternary classification 

that best represents the available estimate from the irregularly scattered data while still 

preserving the “caution” area that provides information on the uncertainty of the safety 

contour’s location. The posterior mean probability for each category; 𝜇𝑖 , 𝑖 =

{1="Go", 2="Caution", 3="No-Go"}; is   

𝜇𝑖 =
𝑛𝑖 + 𝛼𝑖,0

𝑁 + ∑ 𝛼𝑖,0𝑖
(9) 



 

 

where 𝑛𝑖 is the number of counts for the ith category, N is the total number of counts, 

and 𝛼𝑖,0 is the parameter that specifies the initial Dirichlet distribution used. For this 

application, 𝛼𝑖,0 = 1 for every i, which just sets the initial Dirichlet prior to be a 

uniform distribution across all three categories.  

 

2.2.2. Expectation Values with Reliability Weighting 

 For the case where each chart is given a different set of reliabilities, 𝑅𝑗 ,  this 

weighting amounts to recounting the category 𝑅𝑗 times. In other words, the chart with 

𝑅𝑗 > 1 gets 𝑅𝑗 ‘more votes” versus the chart with 𝑅𝑗 = 1. Note that 𝑅𝑗 is being used 

twice in the entire process for consistent use of reliability for 1) computation of the deep 

bathymetry surface via OWA and 2) weighted Bayesian category estimation.  

 With this need to recount, Eqn. (9) becomes  

𝜇𝑖 =
∑ 𝑅𝑗𝑛𝑖,𝑗

𝐽
𝑗=1 + ∑ 𝑅𝑗𝛼𝑖,𝑗

𝐽
𝑗=1

∑ ∑ 𝑅𝑗𝑛𝑖,𝑗
𝐽
𝑗=1

𝐼
𝑖=1 + ∑ ∑ 𝑅𝑗𝛼𝑖,𝑗

𝐽
𝑗=1𝑖

=
∑ 𝑅𝑗𝑛𝑖,𝑗

𝐽
𝑗=1 + 𝛼𝑖,0

∑ ∑ 𝑅𝑗𝑛𝑖,𝑗
𝐽
𝑗=1

𝐼
𝑖=1 + ∑ 𝛼𝑖,0𝑖

(10) 

with 𝛼𝑖,𝑗 ≡ 𝛼𝑖,0 𝐽𝑅𝐽⁄ . This choice of 𝛼𝑖,𝑗 enables setting the initial probability density 

function (pdf) based on knowledge of the reliabilities. In the special case of 𝑅𝑗 = 1 ∀ 𝑗, 

Eq. (10) reduces to Eq. (9). Equation (10) provides the reuse of these reliabilities that 

are used for the OWA weight generation for the bathymetry surfaces for weighted 

categorical estimation. Example 3 provides examples for using Eq. (10). 

 

2.2.3. Example 3 - Bayesian Categorical Estimation 

Let 8 nearest neighbour points to an output grid point be classified by the categories 

{“go, “caution”, “no-go”} for each chart. Let the data of the category counts for the 

charts be as follows. 



 

 

  Counts in each chart 

Chart name k “go” “caution” “no-go” 

“Coastal” 1 3 4 1 

“Approach” 2 6 1 1 

“Harbor” 3 5 1 2 

 

Case a): R = {1, 1, 1}. For this case, 𝑁 = 24. 

𝜇"𝑔𝑜" =
1 ∙ 3 + 1 ∙ 6 + 1 ∙ 5 + 1

24 +  3
= 0.56 

𝜇"𝑐𝑎𝑢𝑡𝑖𝑜𝑛" =
1 ∙ 4 + 1 ∙ 1 + 1 ∙ 1 + 1

24 +  3
= 0.26 

𝜇"𝑛𝑜−𝑔𝑜" =
1 ∙ 1 + 1 ∙ 1 + 1 ∙ 2 + 1

24 +  3
= 0.18 

  

Case b): R = {1, 5, 10}. For this case, 𝑁 = 16 ∗ 24 = 384. 

𝜇"𝑔𝑜" =
1 ∙ 3 + 5 ∙ 6 + 10 ∙ 5 + 1

384 +  3
= 0.64 

𝜇"𝑐𝑎𝑢𝑡𝑖𝑜𝑛" =
1 ∙ 4 + 5 ∙ 1 + 10 ∙ 1 + 1

384 +  3
= 0.15 

𝜇"𝑛𝑜−𝑔𝑜" =
1 ∙ 1 + 5 ∙ 1 + 10 ∙ 2 + 1

384 +  3
= 0.21 

 

In both cases, the output point would be classified as “go”; however, in the second case, 

more weight is given to “no-go” versus “caution”. 

 

2.3. Overall Process Flow 

The overall process is as follows. 



 

 

 a. First, each irregular point cloud of soundings is interpolated to an output grid. For 

every output grid point, a polar-coordinate system with the output grid point being at the 

origin is first set-up. The polar coordinates of each irregularly spaced sounding relative 

to this origin are then computed.  

 b. Soundings are then radially binned into 45-degree sectors. Soundings in each sector 

are then sorted by radial distances to find the nearest neighbours in each sector to the 

output grid point; radial coordinates of these points were stored for reuse during the 

categorization process.  

 c. The bathymetry at the output grid point is then computed using an inverse distance 

weighted average of these 8*K nearest neighbour points, with K = 1 (higher values of K 

will be shown later along with discussion of why we choose K=1). To avoid division by 

zero or bias by a heavily weighted point, radial distances have a nominal uncertainty value 

added of 5 meters. 

d. Once the gridded bathymetries for each chart type are created, the bathymetry 

information is interpolated to a set of two grids for the OWA parameters 𝜃 = {𝜃𝑚𝑖𝑛 , 1}, 

0 ≤ 𝜃𝑚𝑖𝑛 < 1, using reliability of each irregularly spaced input data set for weight 

generation as shown in Eqn. (8).  

e. For each output grid point, the irregularly spaced data point that went into 

estimation of bathymetry at that grid point is then assigned a category of 1, 2, or 3 for 

“Go”/”Caution”/”No-Go” respectively. Counts are replicated for datasets that have 

higher reliabilities as discussed in Appendix B.2.  

f. Equation (10) is then used to compute the posterior probability density function 

(with 𝛼𝑖 = 1 for 𝑖 = {1, 2, 3}) at each output grid point. 



 

 

 g. The category for the maximum from the a posteriori pdf is assigned to the output 

point for the categorical surface, with any ties resolved in favour of the most pessimistic 

category.  

 

3. Case Study Setup 

3.1. Case Study Area  

A test area was identified based on NOAA electronic navigation charts (ENCs) of 

the Norfolk, Virginia area (NOAA – Office of Coastal Survey, 2022) using QGIS 

Version 3.12 (QGIS, 2020). The ENC used to obtain the point cloud data were 

US3EC08M, US4VA12M and US5VA13M. In addition, charts US2EC03M, 

US3DE01M, US4NC32M and US5VA19M were used to complete the scene shown in 

Fig. 3.  The S-57 format chart data’s SOUNDG field were exported as ASCII files of 

position and depth for subsequent processing. 

ENC data are provided at a scale appropriate for use, which affects the sounding 

density.  Bands 3, 4 and 5 (“US3x”, “US4x” and “US5x” here) are, respectively 

“Coastal” (lowest density), “Approach”, and “Harbor” (highest density) charts.  To 

simulate the effects of having data in just one of these categories, data from all source 

charts were exported for “Coastal” (Band 3), “Approach” (Band 3 and 4) and “Harbor” 

(Bands 3, 4, and 5) use in the same area (Figure 4). Candidate test areas along both the 

eastern portion of the dense polygon and the northern portion were considered; the 

northern portion within the Chesapeake Bay was chosen as it contains a dredged 

shipping channel that provides diversity in the sounding depths for numerical 

experiments. 

 

3.2 Numerical Implementations 



 

 

The point cloud data require processing to the common grid for bathymetry and 

(subsequent) navigable surfaces. The gridding is a two-step process, as outlined in 

Appendix C. Implementation was done in MATLAB (Mathworks, 2021). Algorithm 1 

first augments the xyz point-clouds with additional nodes for stability in subsequent 

gridding processes in Algorithm 2. Specifically, Algorithm 1 augments the source point 

cloud data by using a) Delaunay triangulation routines (Preparata and Shamos, 1988) as 

implemented by MATLAB software and b) linear interpolation within each triangle to 

increase the number of points in each irregularly spaced data set. 

Algorithm 2 then a) grids bathymetry for each of the three datasets, b) fuses these 

charts into the shallow and deeper fused surfaces using the OWA for the specific value 

of 𝜃 ∈ [0, 1) of interest for the later surface and c) computes the navigation category in 

accord with the process flow given in Section 2.3. Note from Figure 3 that for edge and 

corner points, data still exists outside of the boundary. This process is repeated for each 

chart so that each xyz point-cloud set has a corresponding gridded bathymetry surface. 

Figures 4d-f show the gridded surfaces of the Figures 4a-c, respectively for K=1. 

The OWA is then used to obtain the shallow and deep surfaces from these gridded 

bathymetry surfaces. The shallow reference surface is created by computing the grid for 

𝜃 = 0.99. Deep bathymetry surfaces are then computed for each of differing values of 𝜃 

in the numerical experiments. Soundings used to grid each grid point of the charts are 

retrieved to compute the navigation category at each grid point. To account for the 

subjective reliabilities in the Bayesian classifier, the set of reliabilities are divided by 

the smallest non-zero reliability and then rounded to the nearest integer. This set of 

integers provides the number of repetitions each irregularly spaced point used in Eq. 

(10) to provide the final posterior distribution for that point. Grids for both bathymetry 

and navigation classes are output from the algorithm. 



 

 

 

4. Results 

Figures 4a-c shows the irregularly spaced point cloud data from the ENCs as 

discussed in Section 3.1. For the gridded surfaces, the nearest neighbour in each 45-

degree bin was used (i.e., K = 1), so that eight points were used in total for computing 

each grid point using inverse distance weighting. The corresponding gridded 

bathymetry surfaces are mapped below each point cloud set in Figures 4d-f. The 

unnormalized reliabilities for grids corresponding to the Coastal, Approach and Harbour 

were subjectively set to  𝑅 = {1, 5, 10}, respectively, based on the qualitative density of 

points between the data sets. Hence, the normalized reliabilities were 𝑟 =

{1/16, 5/16, 10/16}. Figure 5a-b show the shallow and deep surfaces bathymetry 

surfaces for the case of 𝜃 = 0.1. Figure 5c shows the gridded difference between these 

two surfaces.  

In Fig. 6 through 10, two keel depth cases will be discussed: 2.3 m (7.5 feet) and 

3.05m (10 feet). Due to the depth ranges that are present, these cases enable 

visualization of different effects on the navigation surface with respect to reliability 

weightings, number of points used for the inverse distance weighted averaging process, 

keel depth, and attitudinal character.  

Figures 6a-b shows the navigable surfaces for 𝜃 = 0.1 resulting for a) 𝑅 =

{1, 1, 1}, i.e. each surface is equally weighted (so that 𝑟 = {1/3, 1/3, 1/3}), and b) for 

𝑅 = {1, 5, 10} (so that 𝑟 = {1/16, 5/16, 10/16}). The yellow circle indicates a shoal 

feature that is lost by the equally weighted case. This shoal surface is retained in Figure 

6b by using higher reliabilities for denser data sets. 

Continuing to use 𝜃 = 0.1 and 𝑅 = {1, 5, 10}, the results of using K = {1, 3, 5, 

10} are illustrated in Figures 7a-d for a 2.3 m (7.5 foot) keel depth. The shoal area in the 



 

 

southeastern portion of the channel no longer maintains the “no-go” category as more 

nearest neighbours are counted for the navigation category. Using more points leads to 

smoothing away of the “caution” category for one of the cases. Figures 8a-d show these 

same results for the 3.05m (10 foot) keel depth. The shoal area exhibits the same 

patterns as the 2.3m keel case. In the northwest and southeast corners, shallower points 

that are retained in the irregularly scattered data have an effect on changing the “go” 

category to “caution”.  

Retaining K = 1, Fig. 9 shows the navigation categories for 𝜃 = {0.3, 0.5, 0.7} 

for the two keel depths of interest. As is observable, the categories change from 

“caution” to “no-go” with increasing 𝜃 for the keel depth of 2.3m.  For the 3.05m depth, 

these effects are not as drastic. The shoal at (37.04N, -76.09E) becomes a “no-go” area, 

along with more of areas on either side of the channel.  

Figure 10 shows the bathymetry along the transect line along -76.14E illustrated 

in the gridded surfaces for K = 1 and 𝑅 = {1, 5, 10}. Figure 10 also shows the keel 

depths of 2.3m and 3.05m and the corresponding navigation categories for the 2.3m 

keel depth (the navigation category changes for the 3.05m keel depth simply change 

from “no-go” to “go” after crossing 37.09N from the south to the north). Consistent 

with the graphs in Appendix A and in Figures 8 and 9, Figure 10 plots the 2-D effect of 

adjusting the deep surface for 𝜃 = {0.1, 0.3, 0.5, 0.7,0.9}. This transect shows that 

higher values of the attitudinal character leads to a shallowing for the deeper surface. 

We also inspected the difference surfaces as displayed in Figure 5c for higher values of 

the attitudinal character; the maximum of the difference between shallow and deep 

surfaces (given by the upper range of the colorbar) decreased with increasing 𝜃.  

 

 



 

 

5. Discussion 

 The key point in creating the navigable surface is that using lower values of 𝜃 

for the deep bathymetry surface results in more “go” categories becoming “caution” 

categories along the edges of the channel. The deeper that surface is to the reference 

surface, the more the navigator is hedging for higher safety by putting more of the "go" 

categories into "caution". The trade off, it seems, may be false alarms of "caution". This 

classification trend of the shoal area in the southern portion of the scene does not occur 

here until the attitudinal character gets closer to one. This trend indicates that human 

inspection still is required at this location; such false alarms of “caution” could make 

the transit longer or impossible (e.g., closed channels) if accepted without inspection. 

 The concept of optimistic and pessimistic reconstructions in each area directly 

leads to a model of uncertainty for safety.  It is clear that in the region shoalward of the 

deeper reconstruction, it will be unsafe to travel. In the region deepward of the 

reconstruction, it will be safe to travel. In between these regions there is a “caution” 

area.  The size of the “caution” area reflects the attitudinal character of risk acceptance 

in the construction of the navigation surface.  

Different categories could be developed that involve the use of linguistic 

quantifiers for a judgment on the reliability/trust of the information used for assigning R 

values. These quantifiers could be standardized into a defined set of linguistic terms or 

identifiers (i.e., terms placed in a look-up table, for example). Examples are type 

identifications used by GEBCO for the GEBCO grid (IHO, 2019) as mentioned in 

Section 2.1 or CATZOCs. The terms then would be translated into R values that are 

then used by the weight generating function and Bayesian categorical estimator.  

The derivation of relative reliability estimates and attitudinal character are 

subjective, and may develop over time, or through the current tactical situation.  By 



 

 

their nature, it is reasonable to assume that reliability estimates will be more stable 

between observers, however.  For example, it seems a that most observers would agree 

that more dense sources and more recent surveys are likely to be more reliable. Thus 

within the algorithm, R values would reflect the change of horizontal precision due to 

cartographic generalization, with higher R values assigned to ENCs with large scale 

(e.g. Harbor charts should have higher R than Coastal charts) or with more recent 

survey information.  

It also is likely that reliabilities will need to vary spatially, rather than have a 

single fixed set of values as used here for simplicity, primarily to take into account the 

large variability in quality in some of the existing ENCs (as depicted by the presence of 

ENC areas with different CATZOC). Such values might therefore be recommended by a 

hydrographic agency, or through international agreement and change rarely; 

recommended values associated with charted data by the hydrographic office might 

eventually be possible as an adjunct, or alternative, to CATZOC or other data quality 

measures (Calder et al., 2020).  

The attitudinal character, however, is likely to be much more variable since it 

depends strongly on the navigator’s attitude to risk, which is likely to be affected by a 

large number of own-ship factors.  For example, higher risk might be acceptable for a 

bulk carrier than a liquified natural gas (LNG) tanker (Calder 2015), although the total 

cost of an incident might be higher for a large crude oil tanker than for an LNG ship 

(i.e., the clean-up for an oil incident is significantly higher than for natural gas).  

Methods developed to elicit level of risk acceptance in operational research (Raiffa and 

Schlaifer, 2000) might be used to assess appropriate values based on ideas of risk, total 

cost, and utility. 



 

 

The Concept of Operations (CONOP) for the proposed model is primarily in the 

planning stages of a ship transit where the goal is to have a more reproduceable (and 

less mentally taxing) method to fuse a common navigational picture from all of the 

available data sources.  The expectation is that this would most likely take place through 

a specialized tool attached to the Electronic Chart System (ECS) or Electronic Chart 

Display and Information System (ECDIS), since they provide the only generally 

available “point of use” source data for the mariner.  (The ECS route is more likely due 

to International Maritime Organization carriage requirements for ECDIS systems.)  The 

goal would be to allow the navigator to specify reliabilities and attitudinal character, 

and to vary the assumptions for the planned transit to assess the most plausible route.   

The output would most likely be an overlay of the fused categorical classes to be 

viewed in conjunction with other ENC information; an IHO S-100 series (IHO, 2022) 

special-purpose cartographic product would be the most likely current implementation 

model. Use of the S-100 framework for the output has the added benefit of using such 

standards on the input side as well as it would facilitate the standardized ingestion of 

other types of information (e.g., S-102 - high resolution bathymetry, S-104 - tidal 

information). Implementations will likely require software engineering, starting with a 

relatively simple implementation that relates the algorithm parameters to existing ENC 

quality indicators, such as CATZOC, date of the latest applied updates, etc. Such 

implementations could then be made available for end-user software, such as a plugin 

for open-source OpenCPN (OpenCPN, 2022) in the Safety plugins category.  

Some research questions involving human factors remain open and include the 

question of what visualization model would work best for this data.  For planning, a 

simple “traffic light” scheme of red (no-go), yellow (caution), and green (go) 

transparent coloring might be sufficient, but overlays of this kind are known to obscure 



 

 

detail, making them hard to use in practice.  Current research (Kastrisios and Ware, 

2022) on display of uncertainty data for bathymetry in a navigational context might be 

used to provide better approaches.  Another open question with regard to CONOPs is 

whether the proposed method is better for planning, or if they can be used during 

operations (e.g., to provide decision support if the ship has to deviate from the planned 

route).  The requirements for real-time support are quite different from planning, and 

further research would likely be required to determine the best method to provide this 

information, and effective visualization techniques that provide support without clutter 

on the display. 

Further work also could include the use of available types of S57 hazards that 

make the reconstruction more adherent to the human interpretation of a real ENC; the 

paper by Masetti et al. (2018) can serve as a starting point. Some of these objects, for 

instance wrecks (WRECKS) and obstructions (OBSTRN), will require a slightly more 

sophisticated treatment that the simple extraction of the value of sounding (VALSOU, if 

available) as they could necessitate the creation of a buffer area around the feature 

position to reflect horizontal uncertainty of the report. One could translate linguistic 

terms for hazards into automatic “no-go” regions that would then override the Bayesian 

output for that position through possibilistic conditioning (Yager, 2012; Elmore et al., 

2014) or possibility-probability transformations (Petry et al., 2015).  

Additional work also could include temporal dependency built into the 

algorithm that makes grid nodes become more pessimistic based on age of the 

information. In addition, analysis of the shape of the estimated categorical distribution 

(e.g., through the kurtosis, measuring the “peaked-ness” of the distribution) at each 

location can be used to determine the degree of consistency of the various sources, 

which could also be displayed to the user as qualifying information for the algorithm 



 

 

and data. Further, other algorithms for performing the irregular interpolation of the 

bathymetry soundings other than the average of enclosing TIN points could be 

implemented, such as those based on B-Splines (Stienbeck and Koschke, 2021). In 

addition, the algorithms and framework developed in this paper could further be used in 

a secondary fusion process of navigation risk surfaces and safety contours as emerging 

navigation risk tools (Jeong et al., 2019; Bakdi et al., 2020) become available. 

 

6. Summary 

This paper provides a hybrid-framework for human-in-the-loop information 

fusion of navigation planning. Because the human-in-the-loop is core to this problem, a 

soft computing methodology (Order Weighted Averaging) designed for such 

information fusion is used along with Bayesian estimates of risk categories. The 

framework shows how to compute OWA weights when human judgement of reliability 

of the information sources is involved, along with attitudinal character of risk tolerance. 

The estimates of reliability are reused in the Bayesian process of computing the 

categorical risk by providing the number of extra counts used in the Dirichlet-based 

maximum likelihood estimation of the probability for each category. The final category 

assigned is the category with the highest posterior probability, with ties broken toward 

the most pessimistic category.  

Simple examples of using this method to compute an average of bathymetry 

were presented. This process forms the basis of the overall computational flow used in 

the case study. In the case study, maps that show areas for safe, cautionary, or unsafe 

navigation (“go”, “caution” and “no-go” areas) are presented for an area of the 

Chesapeake Bay. Differing maps are constructed with differing sounding densities from 

ENC data. The framework takes irregularly spaced sounding data and computes a 



 

 

common gridded bathymetry surface for each chart set.  Demonstrations of navigation 

risk surfaces computed through the OWA and Bayesian fusion are shown for differing 

levels of attitudinal character of risk tolerance. As the attitudinal character is lowered 

(tending to a more conservative approach), more area of navigation surface that were 

“go” change to “caution” areas along classification boundaries. This change reflects the 

navigator’s desire for extra keel clearance. The case study also shows how keel depth, 

risk tolerance, judgement of data reliability, and spatial extent of information used (by 

number of nearest neighbours) can affect the risk surface calculation by averaging away 

hazardous areas.  

This framework provides a means of being able to record judgements made of 

data reliability. This recoding capability enables reproducibility of the resultant human-

based map of navigation risk. This framework can be further be used for subsequent 

fusion of differing assessments of navigation risk as future capabilities and software of 

estimating navigation risk and safety are developed and emerge for use. 
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Appendix A – Figure associated with examples 

Figure A1 below provides graphs of the depth estimates and OWA weights as a 

function of attitudinal character for the cases discussed in the body of this paper. 

   

Appendix B  – Derivation of Weighted Dirichlet expectation values 

 This appendix derives Eqs (9)-(10). Equation (9) is expectation value for the ith 

category which is derived in Section B.1. Section B.2 will make use of the result of 

Section B.1. to derive Eq.(10). The goal of these derivations is to show that weighting 

the jth data set by 𝑅𝑗 (where 𝑅𝑗 ∈ ℤ+) is equivalent to recounting the data set 𝑅𝑗 times 

for our use of Dirichlet categorical estimation.   

 

B.1. Derivation of Eq. (9) 

 This section follows derivation methods from the YouTube series by 

mathematicalmonk (2012). The derivation below has three major components: 1) initial 

setup of the problem in the context of counting categories, 2) providing useful 

substitutions and relations, and 3) use of substitutions to complete the derivation. The 

gamma function, Γ(𝑛) is core to the Dirichlet probability density function. In the 

present problem, 𝑛 is an integer, which means that 

Γ(𝑛) = (𝑛 − 1)!;   𝑛 ∈ ℤ (B1) 

The expectation is derived explicitly for the category with 𝑖 = 1, but extension to 

categories with 𝑖 ≠ 1 is obvious. 

 

B.1.1 Initial setup 



 

 

Let 𝛼Σ ≡ ∑ 𝛼𝑖
𝑖=𝐼
𝑖=1  where 𝛼𝑖 is the number of counts for the ith category, with an 

initial value for each being 𝛼𝑖,0 > 0 ∀ 𝑖.  For categories 𝑖 = 1, 2, … , 𝐼, the Dirichlet 

probability density function is  

𝑝(𝜃1, … , 𝜃𝐼;  𝛼1, … , 𝛼𝐼) =
Γ(𝛼Σ)

Γ(𝛼1)Γ(𝛼2) × ⋯ × Γ(𝛼𝐼)
∏ 𝜃𝑖

𝛼𝑖−1

𝐼

𝑖=1

(B2) 

where ∑ 𝜃𝑖
𝑖=𝐼
𝑖=1 = 1, with each 𝜃𝑖 representing the probability mass for the ith category. 

The expectation value for parameter 𝜃1 is  

𝜇1 ≡ 𝐸(𝜃1) = ∫ 𝜃1

Γ(𝛼Σ)

Γ(𝛼1)Γ(𝛼2) × ⋯ × Γ(𝛼𝐼)
∏ 𝜃𝑖

𝛼𝑖−1

𝐼

𝑖=1

𝑑𝜃 (B3) 

Notice that 𝜃1 ∏ 𝜃𝑖
𝛼𝑖−1𝐼

𝑖=1 = 𝜃1𝜃1
𝛼1−1 ∏ 𝜃𝑖

𝛼𝑖−1𝐼
𝑖=2 = 𝜃1

𝛼1 ∏ 𝜃𝑖
𝛼𝑖−1𝐼

𝑖=2 . Thus, Eq. (B3) 

becomes 

𝜇1 ≡ 𝐸(𝜃1) = ∫
Γ(𝛼Σ)

Γ(𝛼1)Γ(𝛼2) × ⋯ × Γ(𝛼𝐼)
𝜃1

𝛼1 ∏ 𝜃𝑖
𝛼𝑖−1

𝐼

𝑖=2

𝑑𝜃 (B4) 

 

B.1.2 Useful substitutions and relations 

 A useful recursion relation of the gamma function that this derivation will exploit is 

Γ(𝑛 + 1) = 𝑛Γ(𝑛) (B5) 

Define, 𝛽1 ≡ 𝛼1 + 1, 𝛽𝑖 ≡ 𝛼𝑖 for 𝑖 ≥ 2, and 𝛽Σ ≡ ∑ 𝛽𝑖
𝑖=𝐼
𝑖=1 . Note that 𝛽Σ = 𝛼Σ + 1. 

Thus, with Eq. (B5), the following useful relations hold 

Γ(𝛼1 + 1) = 𝛼1Γ(𝛼1) (B6) 

Γ(𝛼Σ + 1) = 𝛼ΣΓ(𝛼Σ) (B7) 

Γ(𝛽1) = Γ(𝛼1 + 1) = 𝛼1Γ(𝛼1) (B8) 

Γ(𝛽Σ) = Γ(𝛼Σ + 1) = 𝛼ΣΓ(𝛼Σ) (B9) 

Γ(𝛼1) = Γ(𝛽1) 𝛼1⁄ (B10) 

Γ(𝛼Σ) = Γ(𝛽Σ) 𝛼Σ⁄ (B11) 



 

 

  

B.1.3. Completion of the derivation 

 Using Eqs. (B10-B11) in Eq. (B4) yields 

𝜇1 ≡ 𝐸(𝜃1) = ∫
𝛼1

𝛼Σ

Γ(𝛽Σ)𝜃1
𝛼1

Γ(𝛽1)Γ(𝛽2) × ⋯ × Γ(𝛽𝐼)
∏ 𝜃𝑖

𝛽𝑖−1

𝐼

𝑖=2

𝑑𝜃 (B12) 

Note that 𝛼1 = (𝛼1 + 1) − 1 = 𝛽1 − 1 so that  

𝜇1 ≡ 𝐸(𝜃1) = ∫
𝛼1

𝛼Σ

Γ(𝛽Σ)𝜃1
(𝛼1+1)−1

Γ(𝛽1)Γ(𝛽2) × ⋯ × Γ(𝛽𝐼)
∏ 𝜃𝑖

𝛽𝑖−1

𝐼

𝑖=2

𝑑𝜃 (B13) 

= ∫
𝛼1

𝛼Σ

Γ(𝛽Σ)𝜃1
𝛽1−1

Γ(𝛽1)Γ(𝛽2) × ⋯ × Γ(𝛽𝐼)
∏ 𝜃𝑖

𝛽𝑖−1

𝐼

𝑖=2

𝑑𝜃 (B14) 

=
𝛼1

𝛼Σ
∫

Γ(𝛽Σ)

Γ(𝛽1)Γ(𝛽2) × ⋯ × Γ(𝛽𝐼)
∏ 𝜃𝑖

𝛽𝑖−1

𝐼

𝑖=1

𝑑𝜃 (B15) 

The function in the integral is a Dirichlet probability density function, which must 

integrate to 1. Thus, 

𝜇1 ≡ 𝐸(𝜃1) =
𝛼1

𝛼Σ

(B16) 

Now set 𝛼𝑖,0 = 1 ∀ 𝑖 for the initial prior pdf, and 𝑛𝑖 = 𝛼𝑖 after counting of the ith 

category is complete and 𝑁 = ∑ 𝑛𝑖𝑖 . Thus 𝛼1 = 𝑛𝑖 + 𝛼𝑖,0 and 𝛼Σ = 𝑁 + ∑ 𝛼𝑖,0𝑖 . These 

substitution in (B16) yields Eq. (9). 

 

B.2. Derivation of Eq. (10) 

 From Eq. (11), let 𝑛𝑖 = ∑ 𝑛𝑖,𝑗
𝐽
𝑗=1  where 𝑗 = 1, 2, … , 𝐽 indexes the data set used. 

Then 𝑁 = ∑ ∑ 𝑛𝑖,𝑗
𝐽
𝑗=1

𝐼
𝑖=1  and 𝑎𝑖,0 = ∑ 𝛼𝑖𝑗,0

𝐽
𝑗=1 . (For now, the initial setting for 𝛼𝑖𝑗,0 is 

abstract, but will set later in this derivation.) With these substitution, Eq. (11) becomes  

𝜇𝑖 =
𝑛𝑖 + 𝛼𝑖,0

𝑁 + ∑ 𝛼𝑖,0𝑖
=

∑ 𝑛𝑖,𝑗
𝐽
𝑗=1 + ∑ 𝛼𝑖𝑗,0

𝐽
𝑗=1

∑ ∑ 𝑛𝑖,𝑘
𝐽
𝑗=1

𝐼
𝑖=1 + ∑ ∑ 𝛼𝑖𝑗,0

𝐽
𝑗=1

𝐼
𝑖=1

(B17) 



 

 

If the data are now weighted by normalized reliability 𝑟𝑘 (i.e. ∑ 𝑟𝑗
𝐽
𝑗=1 = 1), then Eq. 

(B17) becomes  

𝜇𝑖 =
∑ 𝑟𝑗𝑛𝑖,𝑗

𝐽
𝑗=1 + ∑ 𝑟𝑗𝛼𝑖𝑗,0

𝐽
𝑗=1

∑ ∑ 𝑟𝑗𝑛𝑖,𝑗
𝐽
𝑗=1

𝐼
𝑖=1 + ∑ ∑ 𝑟𝑗𝛼𝑖𝑗,0

𝐽
𝑗=1

𝐼
𝑖=1

(B18) 

This result follows from the derivation in Section B.1 with substitution of 𝛼𝑖 = 

∑ 𝑟𝑗𝛼𝑖,𝑗
𝐽
𝑗=1  and softening the restriction that the gamma function has an integer 

argument.  

 As discussed in the main text of the paper, 𝑟𝑗 ≡ 𝑅𝑗 ∑ 𝑅𝑗
𝐽
𝑗=1⁄ , where 𝑅𝑗 ∈ ℤ+. Thus 

Eq. (B18) becomes  

𝜇𝑖 =
∑ (𝑅𝑗 ∑ 𝑅𝑗

𝐽
𝑗=1⁄ )𝑛𝑖,𝑗

𝐽
𝑗=1 + ∑ (𝑅𝑗 ∑ 𝑅𝑗

𝐽
𝑗=1⁄ )𝛼𝑖𝑗,0

𝐽
𝑗=1

∑ ∑ (𝑅𝑗 ∑ 𝑅𝑗
𝐽
𝑗=1⁄ ) 𝑛𝑖,𝑗

𝐽
𝑗=1

𝐼
𝑖=1 + ∑ ∑ (𝑅𝑗 ∑ 𝑅𝑗

𝐽
𝑗=1⁄ ) 𝛼𝑖𝑗,0

𝐽
𝑗=1

𝐼
𝑖=1

(B19) 

=
∑ 𝑅𝑗𝑛𝑖,𝑗

𝐽
𝑗=1 + ∑ 𝑅𝑗𝛼𝑖𝑗,0

𝐽
𝑗=1

∑ ∑ 𝑅𝑗𝑛𝑖,𝑗
𝐽
𝑗=1

𝐼
𝑖=1 +  ∑ ∑ 𝑅𝑗𝛼𝑖𝑗,0

𝐽
𝑗=1

𝐼
𝑖=1

(B20) 

since all terms in (B20) are divided by ∑ 𝑅𝑗
𝐽
𝑗=1 . Setting 𝛼𝑖𝑗,0 = 𝛼𝑖,0 (𝐽𝑅𝑗)⁄ , Eq. (B20) 

becomes Eq. (12) in the text (i.e. one is informed of how to construct the initial 

Dirichlet pdf using the reliabilities.) Thus, one can account for reliability weighting of 

the jth chart by recounting each category 𝑅𝑗 times. In the special case of 𝑅𝑗 = 1 ∀ 𝑗, Eqs. 

(10) and (B20) reduces to Eq. (9) as required. 

 

  



 

 

Appendix C – Algorithm Sketches 

 Algorithm 1 

• Input Parameters: a) depth clearance; b) degree of optimism (from 0 to 1) 

• Load chart point cloud 

• Perform Delaunay triangulation  

• FOR each triangle set bv 

o Evaluate the depth of the end nodes for each created triangle  

o IF the end nodes are within the depth clearance 

▪ Compute depth in the triangle center from linear interpolation  

▪ Append new triplet to the point cloud. 

o ELSE - skip to next triangle 

• Write augmented XYZ point-cloud to output file. 

 

Algorithm 2 

• Input Parameters: a) XY output grid points, b) depth clearance; c) number of points 

to examine at each node, d) number used indicate no data 

• Load augmented point cloud files from Algorithm 1; retain file name string in 

memory 

• FOR each 𝜃 ∈ {𝜃∗, 𝜃∗} 

o FOR each XY grid point  

▪ Divide the area around each node into octants 

▪ For each octant, identify the closest xyz-points from the augmented 

point-cloud   

▪ IF xyz-data in at least one octant,  



 

 

• XY gridded bathymetry value = average of these nearest 

xyz-points weighted by the inverse of the squared distance 

▪ ELSE   

• XY gridded bathymetry value = no data flag (manual 

intervention will be required to augment the data) 

o WRITE gridded bathymetry to output files for each 𝜃 ∈ {𝜃∗, 𝜃∗} 

• Transform bathymetry to trinary output classes is finally created by using pair of 

grids (with different degree of optimism) as follows: 

• For each cell in the grid pair for 𝜃 ∈ {𝜃∗, 𝜃∗}, set the quaternary value as follows: 

o 3 (no-go): keel depth is either deeper than the (a) sounding depth OR (b) 

deeper reference depth 

o 1 (go): keel depth is shallower than the (a) sounding depth AND (b) 

shallow reference depth 

o 2 (maybe): keel depth is in between the two reference depths AND (b) the 

sounding is in between the two surfaces 

• WRITE trinary output to output file grid  

  



 

 

Figure Captions 

 

Figure 1: Grounding of the USS Guardian on the Tubbataha Reef (130 kilometer 

southeast of Palawan, Philippines) in January 2013 (US Navy photo, public domain).  

Figure 2: Human-in-the-loop framework presented in this paper.  

Figure 3: Case study data and area used as displayed in QGIS software. Black dots 

show soundings from the SOUNDG field in the ENC files, dark yellow signifies land 

and light blue signifies potentially shallow water.”.   

Figure 4: Sounding for the a) Coastal chart, b) Approach chart and c) Harbor Chart. 

Panels d)-f) are the gridded bathymetry for these cases, respectively. 

Figure 5: Panels a-b) are aggregated bathymetry grids for the a) shallow bathymetry 

surface formed by setting 𝜃 = 0.99 in the OWA process and b) deeper bathymetry 

surface corresponding to 𝜃 = 0.1  Panel 5c) maps the difference between these 

bathymetry grids. 

Figure 6: Navigation surface using the OWA for unnormalized reliability weightings of 

a) 𝑅 = {1, 1, 1} and b) 𝑅 = {1, 5, 10} as discussed in the text. 

Figure 7: Navigation surface as nearest neighbors used vary from a) K=1, b) K=3, c) 

K=5, and d) K=10 for the 7.5-foot keel clearance case, 𝜃 = 0.1 and 𝑅 = {1, 5, 10}. 

Figure 8: Same as Figure 7, but for the 10-foot keel clearance case. 

Figure 9: Navigation surface for 𝜃 = {0.3, 0.5, 0.7} for the 7.5-foot keel clearance case 

in subfigures a-c, respectively, and for the 10-foot keel clearance case in subfigures d-f. 

Figure 10: Transect lines for the vertical line shown in the previous figures for 𝜃 =

{0.1, 0.3, 0.5, 0.7, 0.9}.  

Figure A1: Graphs corresponding to the examples given in this Appendix showing 

depth estimates and weightings as a function of attitudinal character. Subfigure a): depth 



 

 

estimates for equal reliability weighting in blue, 𝑟 = {0.3, 0.6, 0.1} in red, and 𝑟 =

{0.1, 0.1, 0.8} in yellow. Subfigures b-d): OWA weights for the three data points (z = 20 

feet in blue, z = 18 feet in red and z = 16 feet in yellow) with attitudinal character for 

(b) the equal reliability case, (c) the 𝑟 = {0.3, 0.6, 0.1} case and (d) the 𝑟 =

{0.3, 0.6, 0.1} case. 
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Figure 10 
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